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Abstract—In the present paper problems related to discrete and discretized non-linear elastic
structures in unilateral contact with a rigid support are considered in the range of large displace-
ments. A finite dimensional vector matrix description, based on the concepts of generalized stresses
and strains, is derived. It is shown that the problem of determining the displacements and the
contact forces for a given constant external loading can be formulated alternatively as a variational
inequality, representing the principle of virtual work, ot as a set of Kuhn-Tucker relations, repre-
senting force equilibrium. Furthermore, the Kuhn-Tucker relations are related to a primal and a
dual minimization problem. The primal problem represents the principle of minimum of potential
encrgy and the dual problem is a generalization to large displacements of the so-called reciprocal
formulation of contact problems. Morcover, the problems of mechanical stability and that of
uniqueness of incremental response are investigated. The incremental, or rate, formulation is derived
together with an associated variational inequality, representing the incremental principle of virtual
work. A sufficient condition for the unigueness of the solution of this variational inequality is given.
A suflicient condition for mechanical stability, on the other hand, can be obtained directly from a
second-order sutficient condition for the optimum ol non-tincar programs. The fact that these two
sufficient conditions do not coincide is discussed and a simple naturally discrete problem exemplifics
this point. Furthermore, it is seen that the curvature of the rigid support has an influence on both
the stability and the unigqueness of the structure, This fact is also illustrated by an example.

1. INTRODUCTION

Mechanical structures are frequently subject to constraints on their deformations. In nature
these constraints are usually one-sided or unilateral. Nevertheless, mathematical models of
mechanical systems frequently allow only for two-sided or bilateral constraints. The reason
for this is perhaps that the mathematical theory needed to properly treat unilateral con-
straints is a fairly recent development. Today, however, tools capable of modelling unilateral
constraints are available in two mathematical disciplines, one concentrates on finite dimen-
sional problems and the other oninfinite dimensional ones. For finite dimensional problems,
incquality conditions, which are the proper mathematical description of unilateral mech-
anical constraints, have been thoroughly studied in the discipline of mathematical pro-
gramming (MP). In solid and structural mechanics, unilateral problems of elastic-plastic
material behaviour have been treated by these methods, both in the case of non-linear and
lincarized kinematical descriptions[1-3]. For the treutment of infinite dimensional problems
involving inequality conditions, the theory of variational inequalities has been developed.
This theory scems to have originated from studics of the mechanical problem of Signorini,
which arises when a lincar elastic body is in frictionless unilateral contact with a rigid
support. Therefore, it is natural that in mechanics mainly various types of contact problems
have been treated by these methods[4-6]. However, except for the recent paper by Ciarlet
and Necas[7], the investigations have been limited to linearized kinematics.

The present investigation deals with a non-lincar Signorini problem, i.c. a non-linear
clastic solid in the range of large displacements (non-linear kinematics) which may come
into frictionless unilateral contact with a rigid support. Based on the concepts of generalized
stresses and strains[8-10]. a finite dimensional description of the problem is derived. Thus,
the resulting mathematical problem can be treated by the methods of MP. However, the
usual emphasis in the MP literature is on the study of optimization problems set down ab
initio : nccessary and sufficient optimum conditions are derived in the analysis. In mechanics,
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on the other hand, the first-order necessary conditions (usually equilibrium conditions) are
given at the outset and from these one derives various variational and optimization
problems. usually known as mechanical “"principles’. This tradition is followed also in this
paper and in that respect it is in agreement with the extensive work of Noble and Sewell{11].
However, the framework set up by them requires convexity of the global strain energy
function, a property known not to hold in the present problem. Therefore, for the derivation
of mechanical principles it was found convenient to rely on arguments based on variational
inequalities. while the notation is that of vectors and matrices usually found in the MP
literature. The connection with non-linear programming is confirmed when the equivalence
between the principle of virtual work and a set of Kuhn-Tucker relations, the latter of
which can be interpreted as equilibrium conditions, is shown.

Thus, the first objective of this paper is to derive a general discrete model for the non-
linear Signorini problem. and the formulation of related mechanical principles such as those
of virtual work and minimum of potential energy.

A second objective of the paper is the derivation of sufficient conditions for mechanical
stability and uniqueness of incremental response. in the case of unilateral contact conditions.
These are subjects that have been treated using MP methodology in the case of elastic-plastic
material behaviour[[2]. For the present problem it is shown that if a stable configuration is
defined as one in which the potential energy attains a strict local minimum, then a second-
order sufficient condition of non-lincar programming can also be interpreted as a sufficient
condition for mechanical stability. Regarding uniqueness of incremental response, the
incremental, or rate, problem, which is a problem in terms of time derivatives of the
displacement and force vectors, is formulated. A variational incquality formulation of this
problem, representing the incremental principle of virtual work, is given. A suflicient
condition for this problemt to have a unique solution is casily obtained. Now, an interesting
conclusion is that the two suflicient conditions for, respectively, stability and uniquencss,
do not coincide. This is due to the presence of unilateral constraints, The situation is
reminiscent of the classical one of “'stable bifurcation™, encountered in the theory of elastic -
plastic bodies[13}]. Furthermore, both stability and unigqueness is determined by a quadratic
form, contaiming a square matrix. This matrix may be interpreted as what is known in finite
element analysis as the tangential stiffness matrix. However, in the case of unilateral
constraints it is found to contain a new sub-term. which is due to the contact force and the
curvature of the rigid support. Thus, this curvature influences the stability of the structure,
as shown in Fig. 2. Both the influence of the curvature of the support and the diilerence
between the two suflicient conditions are exempliticd by the study of explicit structures in
the last section of this paper.

Finally, although the explicit statements of the results of this paper are restricted to
the discrete formulation, the general features of mechanical behaviour disclosed should be
expected to be found also for the underlying continuous problem. Moreover, if vector
products shown by superscript T are interpreted as bilinear forms on vector fields and
matrices replaced by differential operators (see, for instance Ref. [11] or Ref. [14]) the
variational principles derived are valid also for continuous problems.

2. THE MATHEMATICAL MODEL

2.1. Equations of discrete non-linear elasticity

A most effective and elegant represcntation of the relations governing the mechanical
behaviour of discrete and discretized elastic structures undergoing large displacements is
based on the concepts of gencralized stresses and strains, This representation has been
extensively explored and refined in numerous papers by Argyris and co-workers under the
name of the *“natural approach™. (Sec Ref. [8] and the references cited there.) It has also
been presented and interpreted by Besseling[9, 10}, using linear algebra as an ideal tool.
Furthermore, Corradi[15] used generalized variables to provide a rational basis for under-
standing the problem of stress computation in displacement finite element models. In this
section a short discussion is given on how to deduce a discrete representation in terms of
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generalized variables from a material, or Lagrangian, continuous field description of non-
linear elasticity. The existence of a natural. or stress free, reference configuration is assumed
in which the body occupies a region B,, with boundary ¢8,, in physical space.

Consider a finite element e, which in the reference configuration has volume 85 < B,
and boundary ¢Bj. Mechanical equilibrium for the element can be expressed by the fol-
lowing virtual work equation :

J\ tq),(Sll, d¢40+J‘ p()ﬁ(su, dVo = J‘ S,IJE,/ dVo (l)
8% 8% 8y

Here. index notation referring to a system of Cartesian material coordinates a = (a,.4;,a;)
is adopted. The symbols used in eqn (1) are 1, the surface tractions acting in the current
configuration but measured per unit area of the reference configuration ; p, the mass density
of the reference configuration : £ the body forces per unit mass; S;; the components of the
second Piola-Kirchhoff stress tensor ; «, the displacements ; £,; the components of the Green
strain tensor; & the variational operator. The components of the Green strain tensor are
related to the displacement components by the equation

£, < (i'ﬁ+fﬁg+ﬁfséﬂ)_ @

2\7 P) EY)
A\Ca;  Cu;  Cuy Ca,

Through the finite element interpolation functions ¥4(a), the displacement ficld u,(a),
within the finite clement, can be expressed in terms of the nodal displacements ofy

w(a) = ¥ i@y (3
oy

By introducing cqn (3) on the left-hand side of eqn (1) one obtains
L.HS. (1) = F'ou (4)

where u is a vector of nodal displacements, F* is a vector of consistent nodal forces and
superseript T denotes the transpose of u vector. To be able to treat the right-hand side of
cqn (1) similar to the left-hand side, the concept of generalized strains needs to be introduced.
This concept hinges on the observation that if the displacement of a finite element can be
described by a finite number of parameters (the nodal displacements), then it certainly must
be possible to also describe deformation in the same way. The parameters that describe the
deformation are the gencralized strains, and the number of such strains equals the number
of nodal displucements minus the number of rigid body freedoms. The gencralized strains
can be colleeted into a vector €, which is related to the nodal displacements through a non-
lincar algebraic equation

¢ = B'(v") (5)

which is such that ¢ vanishes if and only if the finite element performs rigid body
displucements. Equation (5) replaces eqn (2) in the case of a discrete representation.

For the actual realization of eqn (5), Argyris et al.[8] identifies the generalized strains
with certain geometrically well-defined deformation measures of the finite element. For
instance, in the case of a triangular clement the elongations of its edges may serve as
generalized strains. Besseling{9], on the other hand, suggests that eqn (5) can be obtained
by introducing eqn (3) into eqn (2) and applying the resulting equation at a discrete
number of points within the finite element. This procedure gives a close connection between
numerical integration and generalized strains[15]. Furthermore, Besseling’s approach sug-
gests that interpolation functions ¢4,,(a) can be introduced, such that the strain field £,,(a),
within the finite element can be expressed in terms of the components g4 of &
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k
Eu(a) = Z ¢’Ki/(a)£tK‘ (6)
K=1

Introducing eqn (6) into the right-hand side of eqn (1) gives
R.H.S. (1) = 6*Td¢ N

where the components a% of ¢° are the generalized stresses, defined by
Ok = J S.'jd’j\'i/(a) db,. (8)
8%

The virtual work eqn (1) can now be written as

FTou =0T, V (0u,de)edVe(u) 9)

SV (u7) = {(du", &%) | oe* = VB (u")ou’} (10)

is the set of kinematically admissible variations. The notation VB“(u’) denotes the Jucobian
of the non-linear eqn (5). Since the components of du” are independent, eqn (9) implics

F* = VB (u")"e". (1)

Equations (S) and (11) represent the kinematic and the static conditions of the finite
clement, respectively. However, to fully characterize the mechanical behaviour a constitutive
cquation, connceting gencralized stresses with gencralized strains is also needed. To that
end one will be restricted to hyperelastic behaviour, implying the existence of a strain encrgy
function, # " = #'(E), per unit mass of the reference configuration, such that

oW (E)

=P (12)
i

By using the strain interpolation (6) one can determine a strain energy for the finite element
as a whole

we =J poW (E) dV,. (13)
L
It follows that
awe oW . i iy
36 = Ju P2 3E, i 4V ()

From eqn (12) and by comparing with eqn (8) one obtains
o’ = VW (). (15)

That is, the vector of generalized stresses is obtained as the gradient of the strain energy of
the element, when expressed in terms of the generalized strains.

The mechanical behaviour of a finite element is now fully described by egns (5). (11)
and (15). The next step in building a discrete theory for non-linear elasticity consists in
assembling the finite elements to form a mechanical structure. The vectors of generalized
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variables for this structure are formed as the direct sums of the individual vectors, i.e. in
the case of » finite elements

6" =[a'"67.....a"]

e =TT, ... ] (16)
The total strain energy is the sum
W=y we (17)
e=1
Equation (15) then implies
o = Vi¥(e). (18)

The configuration of the structure is described by a vector of nodal displacements u. How
the tinite elements are assembled to form the mechanical structure is defined by # matrices
T¢ such that

u = Tu. )
Introducing these equations into eqn (5) and taking into account eqns (16) onc obtains

¢ = B(u) (20)
where it is understood that

Buw)' = [B'(T'w)",....B"(T"w)"].

Finally, motivated by the invariance of virtual work, a structural nodal force vector is
defined as the sum

F=Y T'F. @1

eal
Equation (11) can then be extended to the whole structure as
F = VB(u)'o. (22)

The set of egns (18), (20) and (22) now represents a matrix formulation of the
mechanical behaviour of a non-lincar clastic structure undergoing large displacements.

2.2, Relations of uniluteral contact

The deformation of the body (structure) in the previous section will be considered to
be constrained by the presence of a rigid surface G(x) = 0 in physical space. G(x) is assumed
to be a smooth function defined over all of the spuce. The deformation u(a) of all material
points a should be such that

G(a+u(a)) <0. (23)

When the body makes contact with the rigid surfaces, i.e. equality holds for some a in
relation (23), a contact traction vector q arises. If the contact is frictionless, there is no
traction in the tangential direction of the deformed body (which is assumed well defined)
and one can write
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Fig. 1. Representation of unilateral conditions (23) and (25).

q(a) = VG(a+u(a)) P(a). 24

Here P(a) is a scalar field, which can be considered defined on that part of the reference
surface ¢ 8, that may potentially come into contact with the rigid surface. This part of the
surface is denoted by C,. If G{x) is normalized so that [VG(x)| = 1. for points x such that
G(x) = 0, P(a) can be regarded as a field of contact pressure. From physical considerations
the following constitutive conditions for P(a) at all points a of C, can be suggested

P(a) €0, P(a)G(a+u(a)) = 0. (25)

That is, the contact pressure is compressive and different from zero only if the body is in
contact with the rigid surface. It is useful to define a contact displacement ficld on C, as

w(a) = G(a+u(a)). (26)

Relations (23) and (25) then represent the unilateral type of behaviour in Fig. |, which in
the linearized theory of frictionless contact is assumed for the “normal™ components of q
and uf5]. The present discussion shows that P(a) and w{a) iare to be regarded as “normal™
components in the case of large displacements.

Furthermore, the introduction of contact displacement (26) means that egqn (24) can
be described by a virtual work type relation

J' Piw dA4, = f q.0u, dA, QN
- "

0 [

where w and w; are related by eqn (26). Similar to the way the virtual work eqn (1) in the
previous section was used, eqn (27) will provide a basis for a discrete approximation of the
equations representing the mechanical contact.

It is assumed that a finite element discretization according to the previous section has
been performed. If the conditions representing mechanical contact are to be consistent with
this discretization they should be expressed in a finite number of variables. Therefore, one
only requires the satisfaction of relation (23) at a finite number of points of C,. A natural
choice of such points is those nodal points of the finite element discretization that arc
located on C,. Although this is not the only choice possiblc, it scems as if other choices
arc likely to produce unstable finite element approximations[16]. Let the subvector of u,
associated with nodes located on C,, be denoted by u.. Application of eqn (26) at the nodal
points of C, results in the following non-linear algebraic equation:

w = G(u,). (28)
A similar equation results if one applies eqn (26) at other points of C,.

Contact displacements between nodal points can be approximated by applying the
same intcrpolation for w(a) as for displacements within the finite clements. That is, if the
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interpolation functions are extended as zero outside their respective elements, it holds for
the whole of C, that

1 m,
w(@) =) Y yu@wh (29)
]

e=| N=

where | is the number of finite elements with part of their boundary located on Cy and m,
is the number of nodal points on the contact boundary of such an element. w% are the
components of w,

Equation (29) can be used to rewrite the left-hand side of eqn (27)

L.H.S. (27) = PTow (30)

where the components P% of the vector P are defined by

N= J Pyi(a) dA4,. €1))
Co

Comparing this equation with eqn (8) one can see that the proper name for P would be the
vector of generalized contact pressure. However, the attribute generalized in the sequel will
not be used.

The right-hand side of eqn (27) can be rewritten by introducing eqn (3) for each finite
clement with a boundary located on C,. One obtains

R.H.S. (27) = F{éu,. (32)

where F, is a vector of contact forces, calculated from q in a way consistent with the finite
clement displacement approximation. Obviously, F, can be considered as a subvector of
the vector Fintroduced in the previous section.

By using eqns (30) and (32). eqn (27) can be written as

P'ow = Fléu,, V¥ (éw,du)edV, (u,) (33)
where
V. () = {(dw,du,)|déw = VG(u,)du.}.
Variational statement (33) implics that
F. = VG(u,)"P. (34)
This represents eqn (24) in the discrete theory.
By now it should be apparent that, in analogy with the previous section, eqns (28) and
(34) play the role of kinematic and static conditions for the contact surface, respectively.
Components of P and w are generalized variables in the discrete theory and should be

related by constitutive relations. As constitutive relations for the underlying field variables
P and w one can consider the complementarity conditions

w(a) <0, P(a)<0, P(a)w(a)=0 (35)

which are valid for all points a of C,. As already discussed, relation (35), is in the discrete
theory replaced by w < 0. Conditions (35), and (35), are, perhaps, not as obviously
replaced. However, what should be noticed is that P is defined through a virtual work
equivalence (30). Therefore, relations (35) are rewritten as a variational inequality in terms
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of the virtual work. [t can be shown[3] that relations (35) are equivalent, at least for
sufficiently smooth fields, to the requirement that

f Powddy 20 (36)
Co

for all fields dw(a) such that w(a)+dw(a) < 0 everywhere on C,. The virtual work equi-
valence (30) then implies that relations (35) become

w<0 P<0 Pw=0 37

The unilateral contact conditions for a discrete structure undergoing large dis-
placements is now described by the set of relations (28). (34) and (37).

3. VARIATIONAL INEQUALITIES

In the previous section a2 mathematical model that describes the mechanical behaviour
of unilaterally supported elastic structures has been formulated. For a given external
loading on the structure this model forms the mathematical problem of determining the
displacements and the contact pressure. It will be shown in this section that this problem
can be stated as a variational inequality, which has the mechanical meaning of the principle
of virtual work. Furthermore, by using the duality theory of linear programming, this
variational incquality can be shown equivalent to a set of relations, which in the next section
will be identificd with the Kuhn-Tucker conditions of a certain minimization problem and
which have the mechanical meaning of force equilibrium. The Lagrangian multiplicrs of
these conditions can be identified with the contact forces.

The fact that ¥, and u,are subvectors of F and u, respectively, is first stressed. Therelore,
by denoting the complement of F, by F., eqn (22) can be writlen as

F.=VB'(w)'a (38)
F, = VB (uw)'e 39

where an obvious decomposition of VB(u) has been used. Similarly, by denoting the
complement of u, by u,, the variational form of eqn (20) becomes

de = VB'(u)du, + VB*(u)du,. (40)
The principle of virtual work for the free structure (i.e. without considering the uni-
lateral support), which is a statement equivalent to eqns (38) and (39), can now be written
as
6'de = Flou .+ Fidu,, V(S du)edV(u) “n
where

SV (u) = {(Je,du) | (40)}. 42)

Furthermore, the complementarity conditions (37) are equivalent to the variational
incquality

w<0, P'ow>0, ViwedK(w) (43)

where
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3K(w) = {ow|w+dow < 0}, (44)

From relations (28), (33), (41) and (43) the following material-independent statement of
the principle of virtual work is obtained :

G(u) <0, o70e> Flou,, V(de. du)edK'(u) (45)

where
0K'(u) = {(Je,0u) | (40), G(u)+VG(u.)du, <0}. (46)
Assume now that the internal forces are conservative in the way described by eqn (18) and

that F, represents external constant, or “death”, loads. Then the variational inequality (45)
results in the following problem.

Problem 1. Find ue )" such that
SMfu] > 0. Viuedx'(u) 7N
where
M[u] = W(B(u)) - Flu, (48)
is the potential energy of the structure. The set
X' = {u|Gm) <0} (49)
reprosents the kinematically admissible displacements and the set
8X ' (u) = {du] G(u,) + VG(u,)du, < 0} (50

which may be considered derivable from "' using the rules of variational calculus, rep-
resents the kinematically admissible variations of displacements.

Problem 1 is the material-dependent principle of virtual work which characterizes an
equilibrium configuration of the structure. Note that due to the unilateral constraints the
potential energy is not stationary in this equilibrium configuration. Rather, it satisfies the
conditions of a substationary point[6].

An cquivalent of Problem | is to find ue "' such that the linear programming problem
{u is fixed and du is the variable)

minimize  [T{u]
subject to  duedH '(u) (51)

has the solution zero. According to the duality theorem of linear programming[17] this
problem has the dual

maximize 4'G(u,)

VG(u,)4

= >
_F, ] 0. i>20

subject to B, (1)TVI/(B(u)) + [

the solution of which is also zero. Thus, for a u that solves Problem [ there exists a vector
A such that the following relations are satisfied :
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vG Ti
B,(w)TV W(B(u))+[ _(“Fc) ] =0 (52)
A20, G(u)<0, A'G(u)=0. (53)
If the identification 4 = —P is made, relations (52) and (53) can be derived from the

relations of Section 2 by direct substitution. Thus. one can see that the solutions of Problem
| are the same as those satisfying the discrete equations of Section 2.

Finally, one can remark that solutions u and P = — 4 of relations (52) and (53) can
be characterized by the following mixed type of variational inequality problem.

Problem 2. Find (u, P) € X * such that

SLu.P] €0, Y(u,P)edx(P) (54)
where
L{u.P} = W(B(u)) - P"G(u,) — Flu, (59)
X = {(u.P)|P <0} (56)
A3 (P) = {(6u,6P) | P+6P < 0}. (57)

The function Lju, P} is the Lagrangian function that will be of central importance in the
sequel.

4. OPTIMIZATION PROBLEMS

From the theory of non-lincar programming it is known that a necessary condition
(under certain regularity assumptions[17]) for a point to be a solution of a constrained
minimization problem is expressed by the Kuhn-Tucker conditions. Consider the problem
of finding the minimum of the potential encrgy.

Problem 3. Find ue ¢ such that
Mu] = min {[[u*]|u*eX"}. (58)

Onc finds that the Kuhn-Tucker conditions of this problem are identical with relations (52)
and (53), which were shown to characterize all equilibrium conditions of the discrete
unilaterally supported structure. Furthermore, as will be discussed in Section 5, a strict
local minimum of the potential energy corresponds to a mechanically stable equilibrium
configuration. Hence, the interest for Problem 3 is obvious.

Here bricfly the possibility of characterizing the Lagrangian multiplicr vector 4 = —P
as the solution of a dual optimization problem is discussed. (Problem 3 is considered as the
primal problem.) Assume that u is a local solution of Problem 3. Then there exists a vector
A related to u through relations (52) and (53), and it is known from the second-order
necessary conditions[17], that at such a solution point the Hessian of Lagrangian (55) is
positive semidefinite (P considered fixed) on the tangent subspace of the active constraints.
However, in order to make a dual function well defined the stronger assumption that the
Hessian of the Lagrangian is positive definite on the whole Euclidean space is made. Locally,
near u, one can then define the dual function

R(P*) = min L{u*, P*]. (59)

From the local duality theorem([17] Problem 4 is obtained.



On discrete and discretized non-ligear elastic structures in unilateral contact 469

Problem 4. Find P < 0 such that
R(P) = min {R(P*)|P* < 0} (60)

has a local solution if Problem 3 has a local solution where the Hessian of the Lagrangian
is positive definite. The two solutions are related by the Kuhn-Tucker conditions (52) and
(53).

The interest in Problem 4 is due to the fact that it is a generalization to the non-linear
case of the so-called reciprocal formulation of frictionless contact problems[18, 19]. that is,
a formulation in terms of contact forces obtained by explicitly evaluating the minimum in
eqn (59). Indeed. in the case when the strain energy is given by

W = 1e"Ee (61)

and
B,(u) = B(u) = Bu (62)
VG(u) = G(u) = Gu, (63)

are linear, the dual function can be written as[19]

R(P) = PTC'™K 'CP+C'K"! I:;:)z] (64)
2
where
G )
C= [ 0 ] K = B'EB. (65)

5. THE INCREMENTAL PROBLEM

This scction treats the incremental or rate problem associated with the mechanical
problem under consideration. In a quasi-static loading process the displacements and
contiact pressures are supposed to have been determined up to a time ¢. The incremental
changes of these variables are to be calculated for a Further infinitesimal variation of the
external loads.

The equations governing this incremental problem are obtained by Taylor expansions
of the basic equitions of Scction 2. Using notations

u(t+ds) = u(f) +du(t) = u+a d¢ (66)

and similarly for other vectors, eqns (18), (20) and (22) give

G+ad dt = VW (&) + V2 W(d)é dt (67)
§+6 dr = B(a) + VB(@)a d¢ (68)
F+Fde=VB@@a)"6+VB(a)Ta dr+6"V2B(u)a ds (69)

where the following notation is used :
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AV =Y AV (x) (70)

for a sum of Hessians. Similarly, from eqns (28) and (34) one obtains
w+wdr = Ga)+VGu)u, dr Ty
F.+F, dt = G@,)"P+VG(a,)"P dr + PTV>G(in )0, dr. (72)

Since zero-order terms cancel equations for rates from eqns (67)-(69). (71) and (72) are
obtained. By simple substitution &, . w and F, are eliminated from these equations and
one obtains

, "ViG(d,) ' VG(i,)" |
{VB(&)' VI (B(@)) VB(@) + VW (B (@) V> B(il) — F— - (—]G—("-‘)-:—g—]}u = [ -G-‘F‘}*)- F}.

(73)
The matrix within the curly brackets | | can be interpreted as a tangential stiffness matrix.
The second of its three terms is the well-known geometric stiffness matrix, which is due to
initial stresses @ = VI (B(a)). The third term, on the other hand. scems to be encountered
tor the first time in this paper, although it is similar to the stiffness matrix discussed by
Wriggers and Simo[20] in the context of two-body contact problems. It is similar to the
geometric stiffness matrix but is due to initial contact forees P and depends on the curvature
of the nigid surface. Its importance for mechanical stability and uniqueness of incremental
response will be discussed in the next section,

Complementarity conditions (37) introduce constraints on increments w and £ at
time ¢ To give these constraints [ is denoted as the set of indices of nodal points on the
contact boundary. At time . / can be divided into three subsets in accordance with the
present values of contact displacements and pressures

ieAdcilTw () <0, Pu)=0
ieBcliftw () =0, P(t)=0
ieCcliftw () =0, P(1) <0

The conditions imposed on the increments by the complementarity conditions can now be
given by

(i) itied
W, = VG, (a)a, £0, P, =0; (74)

(it) ifie B
W, = VG, (@)u, €0, P, <0, PVG ()i =Py, =0;: (75)

(i) ifieC
W, = VG,(u)u, =0. P 0. (76)

Relations (73) - (76) can be interpreted as Kuhn-Tucker conditions of similar importance
for the incremental problem as relations (52) and (53) for the finite displacement problem
in Section 3. Obviously, several variational inequality problems can be shown to be equi-
valent to relations (73)-(76) and if the tangential stiffness matrix K = | } is positive
definite a set of primal-dual extremum principles exists. However, these subjects will not
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be elaborated on here except one variational inequality formulation, equivalent to relations
(73)-(76). which will be of importance in the next section.

Problem 5. Find 1€ X (i) such that
OMM[a.u] > 0. VouedN (i.a) )
where
Mfa.a] = }a"Ka—Fla, (78)
is the incremental potential energy
H(u) = [@|VG,(u)i, <0VieB, VG, (d)i =0VieC) (79
is the sct of kinematically admissible incremental displacements and
S (i, 0) = 100 VG, () (du, +0,) <0VieB, VG, (u)du, =0VieC} (80)

is the sct of kinematically admissible variations of displacement increments,
One can finally remark that Problem S may be interpreted as the principle of virtual
work for increments and egn (73) is the corresponding equilibrium cquation.

6. STABILITY AND UNIQUENESS

Classically, an equilibrium state of a mechanical system is said to be stable if an
arbitrary small disturbunce results in a motion that is close to the equilibrium state. This
dynamic definition of stability is difficult to apply directly in practice. However, it is easily
shown that a sufficient condition for its validity in the case of conservative systems is given
by the requirement of a strict focal minimum of the potential energy. Also, for unconstrained
systems with an arbitrary small damping, Koiter[21] showed that this energy criterion is
also nccessary for stability. Here general practice is followed (e.g. Ref. [22]) and the
following axiom is adopted : a mechanical system is stable in an equilibrium configuration
if and only if the potential energy has a strict local minimum. In this case of unilateral
constraints the interpretation of the minimum is of course that only the kinematically
admissible variations of the configuration need to give a larger value of the potential
energy. That is, onc has an incquality constrained minimum problem and therefore a
non-classical problem of elastic stability. Fortunately, however, a second-order sufficient
condition of constrained minimization[23] gives a characterization of the situation. This
condition is used to establish the stability theorem.

Stability theorem: a displacement vector u and a contact force vector P that satisfics
Problem 2 charuacterize a stable equilibrium state if

vIH[u,P]v > 0 (81)
for all non-zero v that belongs to
M = {(v{VG,(u)v. =0,YieC, VG(u)v, <0.Vie 5] (82)

where

$AS 14-35-C
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. Tvz R (]
H[u. P] = VB(w)"V:H'(B(u))VB(u) + VH(B(u))'V -B(u)—F— - ﬁc '(‘3‘}-;-(,-} (83)
C={iel|G(u)=0, P <0 (84)
B={iel|G{u) =0, P, =0} (85)

One can remark that if u and P coincide with & = u(¢) and P = P(r) of Section 5, H[u, P},
¢ and B coincide with K. C and B, respectively. The significance of this will be explained
shortly.

It is known that for unconstrained elastic structures the problem of stability is closely
related to that of bifurcation, the nonuniqueness of the incremental response[24]. To
investigate this connection in the case of unilatera constraints a sufficient condition for the
uniqueness of Problem § is given. The variation of the incremental potential energy is
written explicitly as

OlM[a. i) = u"Kda—~Fida, > 0. (86)

Assume that Problem 5 has two solutions u' and u®. Let first 4 = @' and dd = a*~4a', and
sccondly @ = @’ and du = 4'—a’. in relation (86). By adding the two inequalitics onc
obtains

@ -e)'K@' -a°) 0. 87
Clearly, this is a contradiction if K is positive definite on the subspace
M= {v|VG(a)v. =0 VieC}. (88)

Thus, by comparing this result with the stability theorem it is found that even for
unilaterally supported structures stability and bifurcation are related. However, the two
sufficiency theorems do not coincide as in the casc of unconstrained probiecms, where both
M and M cqual the Euclidean space. The difference between the two theorems is reminiscent
of the similar, now classical, situation of **stable bifurcation™ encountered in the theory of
clastic-plastic bodies[13]. The fact that the set of stable equilibrium configurations in the
sense of the stability theorems does not coincide with the set of states such that the
incremental response is unique, is reinforced by a simple counter-example in the next
section.

Morcover, whit scems to be of further significance in the present analysis is the presence
of the term v!P'V3G(u,)v, in the quadratic form that determines stability and uniqueness.
As noted in Scction 5 this term is similar to the geometric stiffness matrix. Its presence
generalizes the elementary example of stability of rigid bodies shown in Fig. 2(a) to the
case of deformable bodies, Fig. 2(b). This feature of the theory will also be exemplified in
the next section.

7. TWO EXAMPLES

In this last section two naturally discrete problems are discussed to illustrate two
different aspects of the theory presented. In the first problem, the difference between the
sufficicncy theorems for stability and incremental uniqueness, respectively, is exemplified.
In the sccond one, the significance of the curvature of the rigid surface is shown.

7.1, An example showing bifurcation from a stable configuration

Consider the two-dimensional system in Fig. 3, which is suggested by the model used
by Shanley to investigate elastic—plastic column failure[12]. It consists of four linear springs
with spring constants &, and & ; and two rigid bars with lengths 2¢ and /. Point D is restricted
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Fig. 2. (a) An elementary example of stable and unstable rigid body systems. (b) Generalization of
the elementary example in the case of a deformable body.

Y - —I - -‘T— A §
-~ A 4. _

{L__m

;

3

Fig. 3. Example showing bifurcation from a stable configuration.

to move vertically and at points A one has unilateral supports. Thus, the problem has four
degrees of freedom and as such the vertical displacement § at point E, the rotation 0 and
the displacements u; and u, of the upper ends of springs 3 and 4 arc chosen. The relation
¢ = B(u), where g contains the clongations of the springs and u contains the four parameters
just mentioned, is easily obtained from gecometric considcrations. The relation G(u,) < 0 s

HEEHMEH

Thus, if § = 0 = Osprings 3 and 4 are compressed a distance . Furthermore, the constitutive
relation & = V¥ (g) is linear and it is given by the matrix diag [k,. k. k2. k.).
For 6 = 0 it can be verified that the incremental equilibrium eqn (73) is
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o F
6 0
{Ki+G} | 4, | = | -5, (90)
iy - P,
where
2k, +k3) 0 ky ks
0 2(‘2(:’(‘-&-!’(2) —'Ckz Ckz
K‘= k: —Ckz k: 0 (91)
kz Ck: O k:
and
G = diag {0, /[k:(20+u; +us) — 2k ,5].0,0}. 92)

To investigate the difference between bifurcation and stability the particular value b = ¢¥//
is chosen for the initial negative gap at A. The reason for this is that the configuration
§= —uy= —u,=5and 6 =0 is then a stable equilibrium configuration, which, never-
theless, does not fulfil the conditions for uniqueness of an incremental solution. In this
configuration onc has G(u,) = 0 and P = 0, so the set M = R* and the set

M = {(3,0. 1y, 114) |1ty < 0,14 <0},

The stability theorem is verified by solving the homogeneous equilibrium problem in
the configuration under investigation

2k, +ky) O ky kK, 5 ]
0 2C2k2 — (.'kz (.'kz (} 0
I\' 2 - L'k 1 kz 0 d] = 0 (93)
k. ¢k, 0 k, ly 0
The solutions are
[6,0,65,8,) =[0,A, ¢l —ci], i=R. (94)

Obviously, only for 1 = 0 a solution that belongs to M is obtained and since the matrix in
eqn (93) is positive scmidcefinite the stability thcorem is satisfied.

However, the uniqueness condition is not satisfied and assuming Py =0 = P, it is
found that all solutions of eqn (90) can be written as

[8.0.1;, 4] = [0,4,cd, —cA)+ 2—;:—[1,0, 1 1]. 95)
1

The conditions #; < 0 and #4 < 0 are satisfied for |A] < F/2ck, and for such values eqn (95)
is a solution of the incremental problem. Thus, such a solution is not unique.
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Fig. 4. (a) Example showing the influence of the curvature of the rigid support on instability and
bifurcation. (b) Two post-bifurcation conligurations.

1.2. An example showing the influence of the curvature of the rigid support on instability and
bifurcation

Consider again a two-dimensional structure. [t consists of two deformable and one
rigid bar with initial lengths d and 25, respectively, as shown in Fig. 4. Furthermore, there
is a parabolic rigid surface present, i.e.

G(u,) = — (ui +ku,) (96)
where & is a constant. For a material behaviour that is described by a linear relation
S=CE 97

between the Green's strain and the second Piola—Kirchhoff stress it can be shown (see
p. 235 of Ref. [25]), that the following equilibrium equations hold for this problem:

Fu = 00,200 el )+ + G 5)] )
a,C 3
F=F,= ';13“(”2""'“1"“‘:) [(uy+uy) (2 +u3 —20) +ui) (99

where a, is the initial cross-sectional area of a deformable bar. Note that eqn (99) represents
two equations. Equations (98) and (99) can be put in non-dimensional form{26] by intro-
ducing
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Fig. 5. A hypothetic bilaterally supported structure.

i, =u /b, @, =u/b, iy =u,/b

F.d* . F.d* . Fd&?
For = ajg—h—‘ 7 a‘:gh" k= aoéb"'
Onc obtains
Foo=a,[ 200 = p(id, +@,)) + i + (4, +,) 7] (100)
F=F,=(y+ay—p) (@ +a,) (@, +a,—2u) +ii] (o1

where g = ¢/b. Likewise, eqn (96) can be put in non-dimensional form and, reinterpreting
k it can simply be considered as non-dimensional as it stands. In the sequel the bar notation
will be dropped for non-dimensional variables in other equations as well.

The potential energy of the problem can then be written as

0= o, —p(a+ ) + 3ui + ey +uy) )’
+ = uy +pus +us) + Wi+ (ua+uy) ) — Fus. (102)

Relation F, = VG(u,)' P is given by

Fcl _ 2u|
o))

It now happens that for a hypothetic bilaterally supported structure, i.e. a structure
according to Fig. 5 where G(u,) = 0 and P £ 0, eqns (100), (101) and (103) can be solved
explicitly for all loads F. One will proceed to do so.

First, consider the symmetrical case 4; = 0 = u,. Equation (100) is identically satisfied
and eqn (101) gives

F = uy(uy —p) (u; —24). (104)

That 1s, the solution is a cubic.
Secondly, for the asymmetrical case; u, # 0. which implies u, # 0, one oblains by
introducing eqn (103) and the equality F = F., in eqn (100)
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Fig. 6. Qualitative behaviour of equilibrium paths.
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Fig. 7. The influence of &, i.c. the curvature of the rigid support.

u, {22—[2(1 —ux)+uf+x2]} =0

(105)
where x = u.+u,. By climinating 1} between eqns (101) and (105) one obtains
Fk
X = e 106
v=sFom TH (106)

which allows u, to be calculated from eqn (101) or eqn (105). One obtains
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. 8(F~k)‘—F3k~‘+;z34k(F~/g)_f
e KFK)

(107)

Thus, when the right-hand side of this equation is non-negative there exists a post-bifur-
cation path (or rather, two paths) of solutions besides the primary path given by eqn (104).

The qualitative behaviour of the equilibrium paths is shown in Fig. 6. and in Fig. 7
the influence of &, i.e. the curvature of the rigid surfuce. is shown. The intersections between
the three branches of the solution can be found by solving F = F* such that

BUF* k) —F*k* + 1 dk(F*—k)" =0 {108)

that is, by letting ui = 0 in eqn (107). The part of the equilibrium paths corresponding to

F < 0 is shown by broken lines in Fig. 6 since they exist only for the hypothetic structure.
If k — oc, the curvature of the rigid support approaches zero. In that case the first

post-bifurcation path, for low values of u,+u; = 1, can be shown to be given by[26]

= +(au—u) =" ", (109)

On the other hand, the second post-bifurcation path, for high valucs of u,+u.. disappears
for this case. Thus, its existence is due to the contact foree dependent term in the tangential
stiffness matrix, as discussed at the end of Scction 6.
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