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Abstract-In the present paper problems related to discrete and discretized non-linear elastic
structures in unilateral contact with a rigid support are considered in the range of large displace­
ments. A finite dimensional vector m.tlri~ description. based on the concepts of generalized stresses
and strains. is derived. It is shown that the problem of determining the displacements and the
contact forces for a given const'lDt e~ternalloading can be formulated alternatively as a variational
inequ.. lity. represcnting the principle of virtual work. or ..s a set of Kuhn-Tucker relations. repre­
senting force equilibrium. Furthermore. the Kuhn~Tucker rclatitms are related to a prim..1and a
dm,1 minimi7ation pfllblem. The prim..1pfllblem represcnts the principle of minimum of potential
energy ..nd the du..1 problem is a generali7ation to large displa~'Cments of the so-called reciprocal
li'rmul.tlion of contm:t pfllblems. Moreover. the problems of mechanical stability and that of
uniqueness of incremental response arc investigated. The incremental. or rate, formulation is derived
h'gelher with an associated vari'ltional inequality. represenling the incremental principle of virtual
work. A sullieient condition for the uniqueness of the solution of this variational il1l.:quality is given.
A sullieienl condition for mechanical stability, on the olher hand. can be obtained dir~'Clly from a
second-order sullieienl eondilion ft'r the optimulll of non-linear programs. The fact lh'lt lhese lwo
sullicienl cundiliuns du not coincide is discussed ami a simple ""turally discrete problem e~emplilies

this puinl. Furthermore. it is seen lhat the curvature of the rigid support has an intluenee on bUlh
lhe slability amllhe unitlueness uf the slrm;ture. This fael is also illustrated by an ellample.

I. INTRODUCTION

Mcch'lnical structures are frequently subject to constraints on their deformations. In mtture
these constraints are usually one-sided or unilateral. Nevertheless. mathematical models of
mechanical systems frequently allow only for two-sided or bilateral constraints. The reason
for this is perhaps that the mathematical theory needed to properly treat unilateral con­
straints is a fairly recent development. Today. however. tools capable ofmodelling unilateral
constraints are available in two mathematical disciplines. one concentrates on finite dimen­
sion'll problems and the other on infinite dimensional ones. For finite dimensional problems,
inequality conditions. which are the proper mathematical description of unilateral mech­
anical constraints, have been thoroughly studied in the discipline of mathematical pro­
gramming (MP). In solid and structural mechanics. unilateral problems of clastic-plastic
material behaviour have been treated by these methods. both in the case of non-linear and
linearizeu kinematical dc.:scriptions[ 1-3J. For the treatment of infinite dimensional problems
involving inequ,tlity conditions, the theory of variational inequalities has been developed.
This theory seems to have origin'lted from studies of the mechanical problem of Signorini.
which arises when a linear elastic body is in frictionless unilateral contact with a rigid
support. Therefore. it is natuml that in mechanics mainly various types ofcontact problems
have been treated by these methods[4-6J. However. except for the recent paper by Ciarlet
and Necas[7]. the investigations h.lve been limited to linearized kinematics.

The present investigation deals with a non-linear Signorini problem, i.e. a non-linear
clastic solid in the range of large displacements (non-linear kinematics) which may come
into frictionless unilateral contact with a rigid support. Based on the concepts ofgeneralized
stresses and stmins[8 -I OJ. a finite dimensional description of the problem is derived. Thus.
the resulting mathematical problem can be treated by the methods of MP. However. the
usual emphasis in the MP literature is on the study of optimization problems set down ab
initio: necessary and sufficient optimum conditions arc derived in the analysis. In mechanics.
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on the other hand. the first-order necessary conditions (usually equilibrium conditions) are
given at the outset and from these one derives various variational and optimization
problems. usually known as mechanical "principles". This tradition is followed also in this
paper and in that respect it is in agreement with the extensive work of Noble and Sewell[II].
However. the framework set up by them requires convexity of the global strain energy
function. a property known not to hold in the present problem. Therefore, for the derivation
of mechanical principles it was found convenient to rely on arguments based on variational
inequalities. while the notation is that of vectors and matrices usually found in the MP
literature. The connection with non-linear programming is confirmed when the equivalence
between the principle of virtual work and a set of Kuhn-Tucker relations. the latter of
which can be interpreted as equilibrium conditions. is shown.

Thus. the first objective of this paper is to derive a general discrete model for the non­
linear Signorini problem. and the formulation of related mechanical principles such as those
of virtual work and minimum of potential energy.

A second objective of the paper is the derivation of sufficient conditions for mechanical
stability and uniqueness of incremental response. in the case of unilateral contact conditions.
These are subjects that have been treated using M P methodology in the case ofelastic-plastic
material behaviour[12]. For the present problem it is shown that if a stable configuration is
ddined as one in which the potential energy attains a strict local minimum. then a second­
order sullicient condition of non-linear programming can also be interpreted as a sutlicient
condition for mcchanical stability. Regarding uniqueness of incremental response. the
incremcntal. or rate. problem. which is a problem in terms of time derivatives of the
displacement and force vectors. is formulated. A variational inequality formulation of this
problem. representing thc incrcmcntal principle of virtual work. is given. A sullicicnt
condition for this problem to have a unique solution is casily obtained. Now. an interesting
conclusion is that the two sullicient conditions for. respcctively. stability and uniqueness.
do not coincidc. This is due to the presence of unilateral constraints. The situation is
reminisccnt of the classical one of "stable bifurcation", encountered in the theory ofelastic­
plastic bodies[ 131. Furthermore. both stability and uniquencss is determined by a quadratic
form. containing a square matrix. This matrix may be interpreted as what is known in linite
clement analysis as the tangential stiffness matrix. However. in the ease of unilateral
constraints it is found to contain a new sub-term. which is due to the contact force and the
curvature of the rigid support. Thus. this curvature inlluences the stability of the structure.
as shown in Fig. 2. Both the inlluence of the curvature of the support and the dilference
between the two sullicient conditions are exempli lied by the study of explicit structures in
the last section of this paper.

Finally, although the explicit statements of the results of this paper arc restricted to
the discrete formulation. the general features of mechanical behaviour disclosed should be
expected to be found also for the underlying continuous problem. Moreover. if vector
products shown by superscript T are interpreted as bilinear forms on vector fields and
matrices replaced by dilTerential operators (see. for instance Ref. [II] or Ref. [14]) the
variational principles derived arc valid also for continuous problems.

::!. TilE MATIIEMATICAL MODEL

2.1. Eiluations of discrete non-linear elasticity
A most effective and elegant representation of the relations governing the mechanical

behaviour of discrete and discretized clastic structures undergoing large displacements is
based on the concepts of generalized stresses and strains. This representation has been
extensively explored and refined in numerous papers by Argyris and co-workers under the
name of the '"natural approach". (Sec Ref. [8) and the references cited there.) It has also
been presented and interpreted by Besseling[9. 10). using linear algebra as an ideal tool.
Furthermore. Corradi[ 15] used generalized variables to provide a rational basis for under­
standing the problem of stress computation in displacement finite element models. In this
section a short discussion is given on how to deduce a discrete representation in terms of
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generalized variables from a material. or Lagrangian. continuous field description of non­
linear elasticity. The existence ofa natural. or stress free. reference configuration is assumed
in which the body occupies a region Bo• with boundary cBo• in physical space.

Consider a finite element e. which in the reference configuration has volume B'O c Bo
and boundary cB~. Mechanical equilibrium for the element can be expressed by the fol­
lowing virtual work equation:

(I)

Here. index notation referring to a system of Cartesian material coordinates a::::; (a l • o~, 03)

is adopted. The symbols used in eqn (l) are t Oi the surface tractions acting in the current
configuration but measured per unit area of the reference configuration; Po the mass density
of the reference configuration; f, the body forces per unit mass; Sij the components of the
second Piola-Kirchhoff stress tensor; tI, the displacements; E'i the components of the Green
strain tensor; c5 the variational operator. The components of the Green strain tensor are
related to the displacement components by the equation

(2)

Through the finite clement interpolation functions "'~(a). the displacement field u,(a).
within the finite clement. can be expresscd in terms of the nodal displ'lcements u~v

n

u,(a)::::; L "'~V(a)u~N'
N.I

By introducing eqn (3) on the left-hand side of eqn (I) one obtains

L.H.S. (I) ::::; .....T~U..

(3)

(4)

where u is a vector of nodal displ41cements, f" is a vector of consistent nodal forces and
superscript T denotes the transpose of a vector. To be able to treat the right-hand side of
eqn (I) similar to the left-hand side. thc concept ofgeneralized strains needs to be introduced.
This concept hinges on the observation that if the displacement of a finite element can be
described by H finite number of parameters (the nodal displacements). then it certainly must
bc possible to also describe tle/urmation in the same way. The parameters that describe the
deformation arc the generalizcd strains. and the number of such strains equals the number
of nod411 displacements minus the number of rigid body freedoms. The generalized strains
can be colll.'Cted into a Vt:ctor £... which is related to the nodal displacements through a non­
linear algebraic equation

,/ = B"(u") (5)

which is such that t vanishes if and only if the finite clement performs rigid body
displacements. Equation (5) replaces eqn (2) in the C41se of a discrete representation.

For the actual realization of eqn (5). Argyris el al.[8) identifies the generalized strains
with certain geometrically well-defined deformation measures of the finite element. For
instance. in the case of a triangular clement the elongations of its edges may serve as
generalized strains. Besscling[9]. on the other hand, suggests that eqn (5) can be obtained
by introducing eqn (J) into eqn (2) and applying the resulting equation at a discrete
number of points withm the finite element. This procedure gives a close connection between
numerical integration and generalized strains[ 15). Furthermore. Besseling's approach sug­
gests that interpolation functions cP"ii(a) can be introduced, such that the strain field E/j(a),
within the finite element can be expressed in terms of the components £Ii of If
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k

Elj(a) = L 4>~iJa)e~,
K-I

Introducing eqn (6) into the right-hand side ofeqn (I) gives

where the components q~ of a' are the generalized stresses. defined by

The virtual work eqn (I) can now be written as

where

c5 V'(u') = {(c5u'. c5s') Ic5s' = VB"(u')<)U"}

(6)

(7)

(8)

(9)

( 10)

is the set of kinematically admissible variations, The notation VB"(u'') denotes the Jacobian
of the non-linear eqn (5). Since the components of <5u' arc independent. eqn (9) implies

( I I )

Equations (5) and (II) represent the kinematic and the static conditions of the finitc
dcmcnt. rcspectively, However. to fully characterize the mechanical behaviour a constitutive
cquation. connccting generalized stresses with generalized strains is also needed. To that
end onc will be restricted to hyperehlstic behaviour. implying the existence ofa strain energy
function, 'II' = #'(E). per unit mass of the reference configuration, such that

( I:!)

By using the strain interpolation (6) one can determine a strain energy for the finite clement
as a whole

It follows that

vW' i vir
-v' = Po v--E-- t/J~'i d VO•

eK 8:, /)

From eqn (12) and by comparing with eqn (8) one obtains

a' = V W'(s').

(13)

( 14)

(15)

That is. the vector of generalized stresses is obtained as the gradient of the strain energy of
the element. when expressed in terms of the generalized strains.

The mechanical behaviour of a finite element is now fully described by eqns (5). (II)
and (15). The next step in building a discrete theory for non-linear elasticity consists in
assembling the finite elements to form a mechanical structure. The vectors of generalized
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variables for this structure are formed as the direct sums of the individual vectors. i.e. in
the case of n finite ekments

The total strain energy is the sum

Equation (15) then implies

(;T = ((; IT. (;ZT, ..•• (J"T]

£T = (£IT.£ZT•...• 1fT].

n

fV = L fP.
<=1

(; = VW(£).

( 16)

( 17)

( 18)

The configuration of the structure is described by a vector of nodal displacements u. How
the finite elements are assembled to form the mechanical structure is defined by II matrices
T" such that

u" = T'·u. ( 19)

Introducing these equations into eqn (5) and taking into account eqns (16) one obtains

where it is understood that

r. = R(u) (20)

t:inally. motivated by the invariance of virtual work. a structural nodal force vector is
ddined as the sum

/I

F = L T-IF-.
_~ 1

Equ:ltion (II) can then be extended to the whole structure as

(21 )

(22)

The set of eqns (HI). (20) and (22) now represents a matrix formulation of the
mechanical beha viour of a non-linear clastic structure undergoing large displacements.

2.2. Rdatiolls oj IIl1i/atera/ c:onWc:t
The deformation of the body (structure) in the previous section will be considered to

be constrained by the presence ofa rigid surface G(x) = 0 in physical space. G(x) is assumed
to be :1 smooth function defined over all of the space. The deformation u(a) of all material
points a should be such that

G(a +u(a» ~ O. (23)

When the body makes contact with the rigid surfaces. i.e. equality holds for some a in
relation (23). a cont,lct traction vector q arises. If the contact is frictionless. there is no
traction in the tangential direction of the deformed body (which is assumed well defined)
and one can write
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Fig. I. Representation or unilateral conditions (23) and (25).

q(a) = VG(a+u(a»P(a). (24)

Here Pea) is a scalar field. which can be considered defined on that part of the reference
surface aoo that may potentially come into contact with the rigid surface. This part of the
surface is denoted by Co. If G(x) is normalized so that IVG(x)1 = I. for points x such that
G(x) = O. P(a) can be regarded as a field ofcontact pressure. From physical considerations
the following constitutive conditions for P(a) at all points a of CI can be suggested

Pea) ~ O. P(a)G(a +u(a» =O. (25)

That is. the contact pressure is compressive and dilTerent from zero only if the body is in
contact with the rigid surface. It is useful to define a contact displacement field on Co as

w(a) = G(a +u(a». (26)

Relations (23) and (25) then represent the unilateml type of behaviour in Fig. I. which in
the line.trized theory of frictionless contact is assumed for the "normal" components of q
and u(5). The present discussion shows that P(a) and lI'(a) are to be regarded as "normal"
components in the case of large displacements.

rurthermore. the introduction of contact displacement (26) means that eqn (24) cnn
be described by a virtual work type relation

r Pi5w dA 0 = r q,i5u, dA 0leo leu
(27)

where wand Ui are related by eqn (26). Similar to the way the virtunl work eqn (I) in the
previous section was used. eqn (27) will provide a basis for a discrete approximation of the
equations representing the mechanical contact.

It is assumed that a finite element discretization according to the previous section has
been performed. If the conditions representing mechanical contnct are to be consistent with
this discretization they should be expressed in a finite number of variables. Therefore. one
only requires the satisfaction of relation (23) at a finite number of points of Co. A natuml
choice of such points is those nodal points of the finite element discretization that are
located on Co. Although this is not the only choice possible. it seems as if other choices
are likely to produce unstable finite element approximations[l6). Let the subvector of u.
associated with nodes located on Co. be denoted by Ue • Applicntion of eqn (26) at the nodal
points of Co results in the following non-linear algebraic equation:

w = G(uJ. (28)

A similar equation results if one applies eqn (26) at other points of Co.
Contact displacements between nodal points can be approximated by applying the

same interpolation for w(a) as for displacements within the finite clements. That is. if the
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interpolation functions are extended as zero outside their respective elements, it holds for
the whole of Co that

I ....

w(a) = L L IjIN(a)",~...
.- I IV_ I

(29)

where I is the number of finite elements with part of their boundary located on Co and m.
is the number of nodal points on the contact boundary of such an element. wIV are the
components of w.

Equation (29) can be used to rewrite the left-hand side of eqn (27)

L.H.S. (27) = pTc5w

where the components P';v of the vector P are defined by

P"tv = r PIjI'f,(a) dA o.le.

(30)

(31)

Comparing this equation with eqn (8) one can see that the proper name for P would be the
vector of generalized contact pressure. However, the attribute generalized in the sequel will
not be used.

The right-hand side of eqn (27) can be rewritten by introducing eqn (3) for each finite
element with a boundary locatcd on Co. Onc obtains

R.H.S. (27) = F!c5u•. (32)

where F, is a vector of contact forces, calculated from q in a way consistent with the finitc
element displacement approximation. Obviously, F. can bc considered as a subvector of
the vector F introduced in the previous section.

Dy using eqns (30) and (32), eqn (27) C,IO be written as

(33)

where

Variational statement (33) implies that

(34)

This represents eqn (24) in the discrete theory.
By now it should be apparent that, in analogy with the previous section, eqns (28) and

(34) play the role of kinematic and static conditions for the contact surface, respectively.
Components of P and ware generalized variables in the discrete theory and should be
relatcd by constitutive relations. As constitutive relations for the underlying field variables
P and II' one can consider the complementarity conditions

w(a) :s;; 0, P(a):s;; 0, P(a)w(a) =° (35)

which are valid for all points a of Co. As already discussed, relation (35) I is in the discrete
theory replaced by w :s;; O. Conditions (35) 2 and (35) J are, perhaps, not as obviously
replaced. However, what should be noticed is that P is defined through a virtual work
equivalence (30). Therefore, relations (35) are rewritten as a variational inequality in terms
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of the virtual work. It can be shown[5] that relations (35) are equivalent. at least for
sufficiently smooth fields. to the requirement that

f Nw dA o ~ 010 (36)

for all fields <5w(a) such that w(a)+<5w(a) ~ 0 everywhere on Co. The virtual work equi­
valence (30) then implies that relations (35) become

w ~ O. P ~ O. pTW = O. (37)

The unilateral contact conditions for a discrete structure undergoing large dis­
ph.lcements is now described by the set of relations (28). (34) and (37).

3. VARIATIONAL INEQUALITIES

In the previous section a mathematical model that describes the mechanical behaviour
of unilaterally supported clastic structures has been formulated. For a given external
loading on the structure this model forms the mathematical problem of determining the
displacements und the contact pressure. It will be shown in this section that this problem
can be stated us a variational inequality. which has the mechanical meaning of the principle
of virtu•.lI work. Furthermore. by using the duality theory of linear programming. this
variationul inequality can be shown equivalent to a set of relations. which in the next section
will be identified with the K uhn-Tucker conditions of a certain minimizution problem and
whidl have the mechanical meaning of force equilibrium. The Lagrangi.m multipliers of
these conditions C.IO be identified with the contact forces.

The fact thut F. and u. arc subvectors ofF and u. respectively. is first stressed. Therefore.
by denoting the complement of F. by F 2. eqn (22) can be written as

(3X)

(39)

where an obvious decomposition of VR(u) has been used. Similarly. by denoting the
complement of u. by uz, the variational form of eqn (20) becomes

(40)

The principle of virtual work for the free structure (i.e. without considering the uni­
lateral support), which is a statement equivalent to eqns (38) and (39). can now be written
as

where

<5V(u) = {(Je.<>u) I (40)}.

(41 )

(42)

Furthermore. the complementarity conditions (37) are equivalent to the variational
inequality

where

w ~ 0, pTc5w ~ 0, 'V Jwe<5K(w) (43)
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JK(w) = {Jwlw+Jw ~ O}. (~)

From relations (28), (33), (41) and (43) the following material·independent statement of
the principle of virtual work is obtained:

(45)

where

(46)

Assume now that the internal forces are conservative in the way described by eqn (18) and
that F ~ represents extemal constant, or "death",loads. Then the variational inequality (45)
results in the following problem.

Proh!e", I. Find ue.Jr I such that

where

n[uJ = W(B(u» - F1u~

is the potential energy of the structure. The set

.Jr' = {uj G(Uc) ~ O}

represents the kinematically admissible displacements and the set

(47)

(48)

(49)

(50)

which may be considered derivable from f I using the rules of variational calculus, rep­
n:sents the kinematically admissible variations of displacements.

Problem I is the material-dependent principle of virtual work which characterizes an
c4uilibrium configuration of the structure. Note that due to the unilateral constraints thc
potcntial energy is not stationary in this equilibrium configuration. Rather, it satisfies the
conditions of a substationary point[6].

An equivalent of Problem I is to find uef' such that the linear programming problem
(u is fixed and <5u is the variable)

minimize e5n[u]

subject to e5uebf l (u) (51)

has the solution zero. According to the duality theorem of linear programming[17} this
problem has the dual

the solution of which is also zero. Thus, for a u that solves Problem I there exists a vector
Asuch that the following relations are satisfied:
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(52)

(53)

If the identification 1 = - P is made. relations (52) and (53) can be derived from the
relations of Section 2 by direct substitution. Thus. one can see that the solutions of Problem
I are the same as those satisfying the discrete equations of Section 2.

Finally. one can remark that solutions u and P = -1 of relations (52) and (53) can
be characterized by the following mixed type of variational inequality problem.

Problem 2. Find (u, P) E'% ~ such that

c5L[u. P] ~ O. V(u. P) e c5,%2(P)

where

L[u. P] = W(8(u» - pTG(u,J - F1u2

,%2= {(u.P)IP~O}

c5.)f"2(p) = {(c5u.c5P) IP+c5P ~ O}.

(54)

(55)

(56)

(57)

The function L[u. P] is the Lagrangian function that will be of central importance in the
sequel.

4. OPTIMIZATION PROBLEMS

From the theory of non-linear programming it is known that a necessary condition
(under certain regularity assumptions[17]) for a point to be a solution of a constrained
minimization problem is expressed by the Kuhn-Tueker conditions. Consider the problem
of finding the minimum of the potential energy.

Problem 3. Find ue,%1 such that

O[u] = min {O[u·]lu·e,%I}. (58)

One finds that the Kuhn-Tucker conditions of this problem are identical with relations (52)
and (53). which were shown to characterize all equilibrium conditions of the discrete
unilaterally supported structure. Furthermore. as will be discussed in Section 5. a strict
local minimum of the potential energy corresponds to a mechanically stablc equilibrium
configuration. Hence. the interest for Problcm 3 is obvious.

Here briefly the possibility of characterizing the Lagrangian multiplier vector 1. = - P
as the solution of a dual optimization problem is discussed. (Problem 3 is considered as the
primal problem.) Assumc that u is a local solution of Problem 3. Thcn there exists a vector
1. related to u through relations (52) and (53), and it is known from the second-order
necessary conditions[17]. that at such a solution point the Hessian of Lagrangian (55) is
positive semidefinite (P considered fixed) on the tangent subspace of the active constraints.
However. in order to make a dual function well defined the stronger assumption that the
Hessian of the Lagrangian is positive definite on the whole Euclidean space is made. Locally,
near u, one can then define the dual function

R(P·) = min L[u·, P*]..'
From the local duality theorem[ 17] Problem 4 is obtained.

(59)
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Problem 4. Find P ~ 0 such that

469

(60)

has a local solution if Problem 3 has a local solution where the Hessian of the Lagrangian
is positive definite. The two solutions are related by the Kuhn-Tucker conditions (52) and
(53).

The interest in Problem 4 is due to the fact that it is a generalization to the non-linear
case of the so-called reciprocal formulation of frictionless contact problems[ 18. 19]. that is.
a formulation in terms of contact forces obtained by explicitly evaluating the minimum in
eqn (59). Indeed. in the case when the strain energy is given by

and

Bu(u) = B(u) = Bu

VG(uc> = G(u.,) = Gu.,

arc linear. the dual function can be written a5[19]

where

c = [r;)'J K = BTEB.

5. TilE INCREMENTAL PROBLEM

(61 )

(62)

(63)

(64)

(65)

This section treats the incremental or rate problem associated with the mechanical
problem under consideration. In a quasi-static loading process the displacements and
contact pressures arc supposed to have been determined up to a time t. The incremental
changes of these variables arc to be calculated for a further infinitesimal variation of the
external loads.

The equations governing this incremental problem are obtained by Taylor expansions
of the basic equations of Section 2. Using notations

u(t+dt) = u(t) +du(t) = ii+i.I dt

and similarly for other vectors. eqns (18). (20) and (22) give

Ii + ti dt = VWei) + v2 W(i)i dt

i +i dt = B(ii) + VB(ii)iJ dt

where the following notation is used:

(66)

(67)

(68)

(69)
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(70)

for a sum of Hessians. Similarly. from eqns (28) and (34) one obtains

w+w dl = G(iic)+,"G(u.,)I( dl (71 )

(72)

Since zero-order terms cancel equations for rates from eqns (67)-(69). (71) and (72) are
obtained. By simple substitution i. a. wand Fe are eliminated from these equations and
one obtains

{ [
fir' j} t T • J_ r " _ _ _ T • _ r V- G( iiJ I O. VG (iie) P

VB(u) V- H (B(u»VB(u) +V W(B(u» V-B(u) - - - - 0- - -:-0- u = - - -f! - - .

(73)

The matrix within the curly br,lckets: ]. can be interpreted as a tangential stiffness matrix.
The second of its three terms is the well-known geometric stilrness matrix. which is due to
initial stresses ii = V W( B(li». The third term. on the other hand. seems to be encountered
for the lirst time in this paper. ,llthough it is similar to the stilrncss matrix discussed by
Wriggcrs and Simo[20] in the context of two-body contact problems. It is simil,lr to the
geometric still'ness matrix but is due to initial contact forces r' and depends on the curvature
of the rigid surface. Its importance for mechanical stability and uniqueness of incremental
response will be discussed in the next section.

Complementarity conditions (37) introduce constraints on increments Ii' ,11ll1 i' at
time I. To give these constraints I is denoted as the set of indices of nodal points on the
contact houndary. At time I. I can he divided into three suhsets in accordance with the
pn:scnt values of contact displal:ements and pressures

iEA c I ill' 11',(1) < O. P,(l) = ()

ie Bel ill' 11',(1) = O. f,(I) = ()
ie eel ill' 11',(1) = O. f,U) < O.

The conditions imposed on the increments by the complementarity conditions can now be
given by

(i) if iE A

(74)

(ii) if iE IJ

(iii) ifieC

Ii', = VG,(iic)l( = O. P, s: o.

(75)

(76)

Relations (73)- (76) C,1ll he interpreted as Kuhn-Tucker conditions of similar importance
for the incremental problem as relations (52) and (53) for the finite displacement problem
in Section 3. Obviously. several variational inequality problems can be shown to be equi­
valent to relations (73) -(76) and if the tangential stiffness matrix K = [ : is positive
ddinitc a set of primal-dual extremum principles exists. However. these subjects will not
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be elaborated on here except one variational inequality formulation, equivalent to relations
(73) - (76), which will be of importance in the next section.

Problem 5. Find ue.i-(ii) such that

bIi [ii, Ii] ~ O. It <51i E bf (ii. Ii)

where

is the incremental potential energy

is the set of kinem.ttic<llly admissible increment<ll displacements and

(77)

(78)

(79)

is the set of kinem<ltic<llIy <ldmissible v<lri<ltions of displ<lcement increments.
Onc c<ln finally rcm<lrk th<lt Problcm 5 may bc interprcted <IS thc principle of virtual

work for incrcments and el.{n (73) is the corresponding el.{uilibrium equation.

6. STABILITY AND UNIQUENESS

CI<lssic<llly, an Cl.{uilibrium st<lte of a mechanical system is said to be stable if an
arbitrary small disturbance results in a motion that is close to thc cquilibrium state. This
dynamic definition of stability is difficult to apply directly in practice. However, it is easily
shown th<lt <I sufficient condition for its validity in the case of conservative systems is given
by thc rCl.{uircment ofa strict local minimum of the potential encrgy. Also, for unconstrained
systems with an arbitrary small damping, Koiter[21] showed that this energy criterion is
also necessary for st<lbility. Here general pr<lctice is followed (e.g. Ref. [22]) and the
following axiom is adopted: a mechanical system is stable in an equilibrium configuration
if and only if the potential cnergy has a strict local minimum. In this case of unilateral
constraints the interpretation of the minimum is of course that only the kinematically
aumissibk variations of the configuration need to give a larger value of the potential
energy. That is, one has an inel.{uality constrained minimum problem and therefore a
non-cl<lssical problem of cl'lstic stubility. Fortunately, however, a second-order sufficient
condition of constrained minimization[23] gives a characterization of the situation. This
condition is used to cstablish the stability theorem.

5,"whility th('orel/l: a displ<lcement vector u und a contact force vcctor P that satisfies
Problem 2 churacterize a stable el.{uilibrium state if

(81 )

for all non-zcro v that belongs to

(82)

where
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C={iE1IG,(uJ=O, P,<O}

B= {iE!lG;(uJ =0, P;=O}.

(83)

(84)

(85)

One can remark that if u and P coincide with ii = u(t) and P = pet) of Section 5. H[u. Pl.
C and Bcoincide with K, C and B, respectively. The significance of this will be explained
shortly.

It is known that for unconstrained elastic structures the problem of stability is closely
related to that of bifurcation. the nonuniqueness of the incremental response[24l. To
investigate this connection in the case of unilateral constraints a sufficient condition for the
uniqueness of Problem 5 is given. The variation of the incremental potential energy is
written explicitly as

(86)

Assume that Problem 5 has two solutions u1and u~. Let first iI = ill and 15i1 = il1 -U I, and
secondly iI = u~ and <5u = UI_U~. in relation (86). By adding the two inequalities one
obtains

(87)

Clearly. this is a contr:ldiction if K is positive definite on the subspace

(88)

Thus. by comparing this result with the stability theorem it is found that even for
unilaterally supported structures stability and bifurcation are related. However, the two
sulliciency theorems do not coincide as in the case of unconstrained problems, where both
Itt and 1\-1 e4u:11 the Euclidean space. The dilference between the two theorems is reminiscent
of the similar. now classical. situation of "stable bifurcation" encountered in the theory of
elastic-pbstic bodies[13]. The fact that the set of stuble equilibrium configurations in the
sense of the stability theorems does not coincide with the set of states such that the
incremental response is unique, is reinforced by a simple counter-example in the next
section.

Moreover, what secms to be of further significance in the present analysis is the presence
of thc tcrm ,.!·p I V2G(UJv< in the quadratic form that determines stability and uniqueness.
As noted in Section 5 this term is similar to the geometric stiffness matrix. Its presence
gencralizes lhe elementary example of stability of rigid bodies shown in Fig. 2(a) to the
case of deformable bodies, Fig. 2(b). This feature of the theory will also be exemplified in
the next section.

7. TWO EXAMPLES

In this last section two naturally discrete problems are discussed to illustrate two
different aspects of the theory presented. In the first problem, the difference between the
sulliciency theorems for stability and incremental uniqueness. respectively. is exemplified.
In the second one. the significance of the curvature of the rigid surface is shown.

7.1. An example showing hifurcatioll from a stahle COf/figuratioll
Consider the two-dimensional system in Fig. 3, which is suggested by the model used

by Shanley to investigate elastic-plastic column failure[ 12]. It consists of four linear springs
with spring constants k I and k 1 and two rigid bars with lengths 2c and I. Point D is restricted
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~ .

I
I'~,I/.I-

~;fJY;J
Fig. 2. (a) An elementary e~ample of stable and unstable rigid body systems. (b) Generalil.ation of

the elementary example in the case of a deformable body.

E

B, B,

Fig. 3. Example showing bifurcation from a stable configuration.

to move vertically and at points A one has unilateral supports. Thus. the problem has four
degrees of freedom and as such the vertical displacement c5 at point E. the rotation 0 and
the displacements UJ and U4 of the upper ends of springs 3 and 4 are chosen. The relation
£ =B(u). where £ contains the elongations of the springs and u contains the four parameters
just mentioned. is easily obtained from geometric considerations. The relation G(uC> ~ 0 is
given by

(89)

Thus. if c5 = 0 =0 springs 3 and 4 are compressed a distance b. Furthermore. the constitutive
relation (1 = VW(a) is linear and it is given by the matrix diag [k l • k,. k 2• k 2].

For 0 = 0 it can be verified that the incremental equilibrium eqn (73) is
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{K , +G} [;J = [-~,] (90)

-P4

where

. [2(k':k') 0 k: k, ]2c:(k ,+k:) -ck: c~:
K, = k: -ck: k l

(91)

k: ck l 0 k l

and

G = diag {0./(k z(2o+Ul+U4)-2k\c5].O.O}. (92)

To investigate the difference between bifurcation and stability the particular value b = e 21/
is chosen for the initial negative gap at A. The reason for this is that the configuration
<') = -II, = -114 = band 0 = 0 is then a stable equilibrium configuration. which. never­
theless. does not fulfil the conditions for uniqueness of an incremental solution. In this
configuration one has G(uJ = 0 and P = O. so the set M = R 4 and the set

The stability theorem is verified by solving the homogeneous equilibrium problem in
the configuration under investigation

The solutions are

[

2(k,;k:)

k l

kz

o
2e 2k l

-ck z
ck l

(93)

(94)

Obviously. only for;. = 0 a solution that belongs to M is obtained and since the matrix in
eqn (93) is positive semidefinite the stability theorem is satisfied.

However. the uniqueness condition is not satisfied and assuming Pl =0 = 1'4 it is
found that all solutions of eqn (90) can be written as

(95)

The conditions Ul ~ 0 and U4 ~ 0 are satisfied for 1).1 ~ Fl2ck: and for such values eqn (95)
is a solution of the incremental problem. Thus. such a solution is not unique.
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Fig. 4. (a) EXilmple showing the innuem:e of the curvature of the rigid sUl'port on instability and
bifurcation. (b) Two post-bifurcation configurations.

7.2. An example showing the influence of the curvature of the rigid support on instability and
bifurcation

Consider again a two-dimensional structure. It consists of two deformable and one
rigid bar with initial lengths d and 2b. respectively. as shown in Fig. 4. Furthermore, there
is a parabolic rigid surface prescnt, i.e.

where k is a constant. For a material behaviour that is described by a linear relation

S=CE

(96)

(97)

between the Green's stmin and the second Piola-Kirchhoff stress it can be shown (see
p. 235 of Ref. [25]). that the following equilibrium equations hold for this problem:

(98)

(99)

where ao is the initial cross-sectional area ofa deformable bar. Note that eqn (99) represents
two equations. Equations (98) and (99) can be put in non-dimensional form[26] by intro­
ducing
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F

Fig. 5. A hypothetic bilaterally supported structure.

One obtains

(100)

(101)

where JL = c/h. Likewise. el\n (96) can be put in non-dimensional form and. reinterpreting
k it can simply be considered as non-dimensional as it stands. In the sequel the bar notation
will he dropped for non-dimensional variables in other equations as well.

The potential energy of the problem can then be written as

n = HIII-JL(II~+ud+ hll~+(II~+ud~W

+ H- III + Jl (112 + II J) + !(Ui + (u 2 +U J) 2W- FII J. ( 102)

Relation F< = VG(uJTp is given by

(103)

It now happens that for a hypothetic bilaterally supported structure. i.e. a structure
according to Fig. 5 where G(uJ = 0 and P ~ O. eqns (100). (101) and (103) can be solved
explicitly for all loads F. One will proceed to do so.

First. consider the symmetrical case U I = 0 = 112. Equation (100) is identically satisfied
and el\n (10 I) gives

(104)

That is. the solution is a cubic.
Secondly. for the asymmetrical case; UI # O. which implies U~ # O. one obtains by

introducing eqn (103) and the equality F = Fez in eqn (100)
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Fig. 6. Qualitative behaviour of equilibrium paths.
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Fig. 7. The intluence of k. i.e. the curvature of the rigid support.

(105)

where x= U2+U)_ By eliminating u; between cqns (101) and (105) one obtains

Fk
x = 2(F-k) +jl

(106)

which allows u. to be calculated from eqn (101) or eqn (105). One obtains



IIi
8(F-k)'- F:k] + Il:4k(F-k):
------~k(T~7::)~- (107)

Thus. when the right-hand side of this equation is non-negative there exists a post-bifur­
cation path (or rather, two paths) of solutions besides the primary path given by eqn (104).

The qualitative behaviour of the equilibrium paths is shown in Fig. 6. and in Fig. 7
the influence of k, i.e. the curvature of the rigid surface, is shown. The intersections between
the three branches of the solution can be found by solving F = F* such that

( 108)

that is, by letting UT = 0 in eqn (107). The part of the equilibrium paths corresponding to
F < 0 is shown by broken lines in Fig. 6 since they exist only for the hypothetic structure.

If k .... OC', the curvature of the rigid support approaches zero. In that case the first
post-bifurcation path, for low values of U: + 1/] = 11_" can be shown to be given by[26]

(109)

On the other hand, the second post-bifurcation path, for high v.tlues of 11:+111, dis'lppears
for this case. Thus, its existence is due to the contact force dependent term in the tangential
stilfness matrix. as discussed 'It the end of Section 6.
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